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I NTRODUCTION

Increased automation of human-machine systems requires

the human to supervise and make decisions about the

operation of many parallel subsystems. The human is also

beginning to interact with computers having responsibilities

much the same as those of the human: the supervision of

ongoing tasks and decision making with respect to these

tasks. With human and computer both acting as

jdecisionmakers, the allocation of tasks to human and

computer becomes a basic issue of system design.

This work is influenced by the belief that in the

operation of multitask dynamic systems, there exists a

subset of tasks which might best be allocated to human or

*computer in a dynamic or situation dependent manner. This

* - approach to human-computer task allocation contrasts with

the static approach suggested, for example, by Licklider

L (1960) in which a set of tasks is partitioned into two

subsets -- one being allocated to the human, the other to

[the computer. A dynamic approach allocates a particular

task to the decisionmaker (human or computer) that has at

[ that moment the resources available for performing the task.

Rouse (1977; 1981) suggests that a dynamic approach to task

allocation has several advantages with respect to the static

approach, including improved utilization of the system's

resources, less variability of the human's workload, and the
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possibility for the human to have an improved knowledge of

the overall system state. Further, this sharing of task

responsibility lessens the risk involved in either

decisionmaker's diversion of attention to one task and

results in a system more tolerant of failure in either

decisionmaker. But the overlapping of reponsibilities also

introduces the possibility that conflicts between and

redundant actions by the two decisionmakers will occur.

The problem of conflict between decisionmakers might be

approached as a problem of supplying each decisionmaker with

information regarding the present and planned actions of the

other decisionmaker. In particular, the problem of

supplying the computer with information regarding the action

plan of the human appears to be critical, because it is this

information flow that permits a situation in which the

computer actively seeks to accomodate the human. This

enables the human to retain the initiative and primacy

associated with a supervisory role. The computer serves as

a decision aid, adapting its task performance to complement

that of the human.

The simulation study presented in this paper

investigates implicit and explicit means of human-computer

communication to facilitate dynamic task allocation in

multitask, time-constrained environments. The distinction

between implicit and explicit communication is based upon

2
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I whether or not the human and the computer engage in a

dialogue to determine the appropriate allocation strategy.

IModels of human attention allocation might be used to

I communicate implicitly to the computer the human's planned

$actions (Greenstein, 1980). This approach to dynamic task

I allocation might be particularly appropriate in multitask,

time-constrained environments. Implementation of such an

approach requires the development and appropriate use of

predictive models of human attention allocation performance.

Alternatively, the human might explicitly communicate

planned actions to the computer. It would then be necessary

to define and optimize the human-computer dialogue required

to achieve dynamic task allocation.

-3-



THE MULTIIASK SITUATION

Approach

The simulation uses a queueing approach to investigate

human-computer interaction in a multitask decision making

situation. The situation is that of a human and computer

simultaneously scanning a series of ten instruments or

displays in order to detect indications of failure in

related subsystems. The human or computer repair failed

subsystems according to a predetermined strategy based on

the order of the instruments rather than the times when the

failures occurred. Each time the human or computer finishes

repairing a subsystem, all ten instruments are immediately

scanned by that entity and decisions as to which subsystem

*to next repair are made. Since this decision takes into

account the states of all subsystems, the scan time is

constant and instantaneous for each decision. The time

taken to scan all instruments and come to a decision is

assumed to be negligible.

Two modes of communication between human and computer

I. are considered. If the human were to explicitly communicate

knowledge of his actions to the computer, conflict between

the two decisionmakers could perhaps be completely avoided;

1 the computer would not attempt to repair the same subsystem

4,4



J being repaired by the human. Such explicit communication,

however, would quite possibly be costly in terms of time,

since the human would have to inform the computer of his

actions at all times. This type of communication will be

explored briefly in the second of the two experiments

presented. An alternative to this mode of communication

might be achieved by supplying the computer with a model of

how the human selects subsystems for repair. The computer

can use this model to make assumptions about which subsystem

the human is likely to select; it can then select its own

actions so as to avoid conflict. While explicit

communication is expected to be nearly perfect, it is likely

that implicit communication such as this would not be; when

working with humans, it is expected that any model of

behavior will be less than perfectly predictive. In the

first experiment we investigate the use of less than perfect

models to guide a second decisionmaker's action selection.

In the first experiment, investigating implicit

communication, it is assumed that the time required to

repair a subsystem is constrained by that system and not by
'4

the speed of the entity performing the repair. Repair times

are exponentially distributed with identical means for both

the human and the computer. The effective speeds of the

human and computer are therefore identical. In the second

experiment, investigating explicit communication, it is

5-"I
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I assumed that there is a time cost associated with

communicating the human's action plans to the computer. An

increment is added to the human's repair time to reflect the

time required to carry out this communication. The times

between failures are exponentially distributed with the mean

varied between conditions, but identical for each subsystem

within a condition. The period from the time a subsystem

fails to the time it is repaired (down time) is the sum of

the time for that subsystem to be selected for repair by an

entity (waiting time during repair of other subsystems) plus

the time required to repair the subsystem once it has been

selected.

For every experimental condition, two trials of the

simulation were performed with each trial consisting of

10,000 events (subsystem failures) . Each of the two

simulations started with a different random seea. In this

way, statistical analysis could be performed using the

variance between the two runs as error variance.

Variables

In order to describe the simulated system, it is

necessary to discuss several variables and parameters which

constrain the system. The following list presents these

descriptive parameters.

I
, -6 -

'!



I

a) Mean time between failures (MTBF) for each subsystem

was manipulated experimentally. MTBF was

exponentially distributed with means of 25, 50, 75 and

100 seconds. Since the number of subsystems is not

infinite (there are ten instruments) and failures are

not permitted to queue up in individual subsystems (no

new failures can occur in a subsystem while it is in

the failed state), it is not critical that the system

be stable in queueing terms; an infinite queue cannot

form. The only effect of an unstable system will be

1 that some subsystems never get repaired throughout the

-i course of the simulation. Realistically, a MTBF of 25

seconds per subsystem is absurd when it takes 10

I seconds to repair a subsystem. In a simulation,

however, this value can be used to severely load the

* "decisionmakers, permitting them little or no idle

time.

" b) The number of instruments was held constant at 10.

s "Varying the value of MTBF, rather than the number of

Sinstruments, was chosen as the means of decisionmaker

.loading so that dependent measures of individual

subsystems could be compared directly across all

conditions.

T7
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c) The mean time to repair a subsystem (M~TTR) is the time

required to repair a subsystem once service to that
subsystem is initiated. In the first experiment, this

time was exponentially distributed with a mean of 10

seconds for both the human and computer. As

previously mentioned, this speed equality between

human and computer is explained in terms of system

constraints, rather than an assumption that humans and

computers are equally fast.

In the second experiment, it was assumed that the time

necessary for the human to inform the computer of

subsequent actions was constant each time a decision

was made. A constant amount of time was therefore

added to the human's repair time in the explicit

communication situation. This delay was varied

experimentally and took the values 1, 2, 3, 4, and 5

seconds. This delay is the "cost" incurred by

explicit communication.

d) The service policy of the human was held constant

throughout the experiment. The human scanned the set

of 10 instruments and noted those subsystems that

required repair. This scan time was assumed to be

negligible. The human then repaired the first failed

subsystem in the series of subsystems ordered from 1

-8-



to 10. Upon completion of this repair, the human

initiated a new scan of the instruments. That the

human serves earlier subsystems in the series in

preference to later subsystems is not meant to imply

that earlier subsystems are of greater importance than

later ones. It is simply meant to reflect that the

human adopts some policy for servicing the subsystems.

Two basic service policies for the computer were

investigated in the first experiment. In one policy

(termed the identical strategy) it is assumed that the

computer uses its model of the human's actions to

mimic the human's actions. Thus, the computer follows

a service policy identical to the human's policy

outlined above. In the second policy (termed the

complementary strategy) it is assumed that the

computer uses its model of the human's actions to

derive a service policy that, in concert with the

human's policy, seeks to minimize total down time of

the subsystems within the system. In this policy, the

computer scanned the set of 10 instruments and noted

those that required repair, as described above. The

computer then repaired the last failed subsystem in

the series of subsystems. Upon completion of this

repair, the computer initiated a new scan of the

instruments. The premise of this policy is that with

-9Il



the human attending to the first failed subsystem of

subsystems 1,2,...,10 noted in his scan, the computer

is least likely to conflict with the human if it

chooses the last failed subsystem noted in its scan.

Note that conflict is defined to occur when one entity

repairs a system that is already being repaired by the

other entity. In this study, both entities are

permitted to repair this subsystem as if there were no

other entity also attempting to carry out the repair.

The penalty incurred by conflict, then, is that one

entity allocates time to a redundant repair when it

might otherwise be repairing an unattended failed

subsystem.

e) In the first experiment, the predictive validity of

the model used to achieve implicit communication was

varied by having the computer follow the identical or

complementary strategies in only a certain percentage

of the decisions. A less than perfect model for

communication of the human's actions was simulated by

varying the percentage of decisions that the computer

makes which are consistent (in an identical or

complementary manner) with the human's actions. The

R consistent strategy was followed either 0%, 20%, 40%,

60%, 80% or 100% of the time. To simulate a condition

in which the actions of the computer bear no

1
- 10 -
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relationship to the human's actions, the remainder of

the computer's decisions selected failed subsystems

for repair in a random fashion. When the consistent

strategy was followed 0% of the time, the computer

selected the subsystems to be fixed totally randomly.

In this situation, implicit communication was non-

existent. At the other extreme, with the 100%

consistent strategy (identical or complementary), the

computer had a perfect model of the human and implicit

communication was maximized.

f) The total down time experienced by each subsystem

over a simulation trial was employed as a measure of

system performance under the manipulation of the

variables listed above.

.

[
I
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EXPERIMENTS

Experiment I

In this simulation experiment, two major issues were of

interest. The first concerns the manner in which the

computer uses knowledge of the human's actions to select its

own actions. If both the identical and complementary

computer strategies employed here produce increases in

performance over a random action selection scheme, it could

be asserted that a computer's strategy referencing a model

* of the human is preferable to a non-referencing strategy.

It is expected, however, that the fact that the computer's

strategy is based upon a model of the human does not of

itself result in enhanced system performance. The strategy

derived from the knowledge of the human's actions must be

selected to complement these actions rather than compete

with them. Thus, it is expected that only the complementary

computer strategy will improve overall system performance

over the random computer strategy baseline. In addition, it

Is expected that the identical and complementary strategies

will affect performance of the individual subsystems

[ differently. Using the identical strategy, the first

several. subsystems will be serviced much more frequently

than later subsystems. With the complementary strategy,

both the initial and the final few subsystems will be

1
, __ _ __ -,•12 _
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serviced frequently, while service of the middle subsystems

*1 will be less frequent.

The second issue concerns the sensitivity of system

performance to the model's predictive validity. It is

expected that as the predictive validity of the computer's

model of the human decreases, and, as a consequence, the

computer's action strategy is less frequently related to the

4 actions of the human, gains in system performance produced

by the use of the model will also be offset. There should

be a point at which the use of a model with little

predictive validity produces performance approximating that

*of using no model at all. The location of this point is of

interest as it serves to indicate how accurate models of the

-4 human must be to be of use in a human-computer system.

The first set of experiments investigated the effects

of subsystem number, the manner in which the computer

employs the model of the human to derive its own service

policy, and the predictive validity of the model upon

subsystem down time.

I. Two means by which the computer might employ knowledge

of the human's actions to guide its own actions were

investigated -- the identical and the complementary

strategies discussed earlier. The identical and

- 13 -
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complementary strategies affect system performance in

significantly different ways. An analysis of variance

indicates a highly significant effect of strategy

(F(1,480)=3906.93, p<.0001). The average down time over all

subsystems is approximately 22285 seconds per subsystem

(27.1% of the time) for the identical strategy, but 19422

seconds per subsystem (23.6% of the time) for the

complementary strategy, indicating a 2.5% increase in

subsystem operating time for the latter strategy (the total

time for the simulations averaged 82200 seconds). Such a

difference can be explained by conflicts being more likely

to occur when the strategy being followed is identical,

particularly with the speeds of the human and computer

effectively equal.

A more interesting effect is the interaction between

* subsystem and strategy (Fig. 1).

For this effect, F(9,480)=694.77 (p<.0001). Note that

for the first several subsystems, the curves appear to be
'C.

almost identical. Apparently, having two decisionmakers

both follow an identical strategy of repairing the first

failed subsystem in the series does not significantly

decrease the down time of the first several subsystems from

that achievable when only one decisionmaker follows this

strategy. The major differences in down time occur in the

later subsystems. When the computer follows the identical

-14-I
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SUBSYSTEM NUMER

Figure 1. Total down time for each subsystem with the
computer following identical and complementary
strategies.

strategy, the later subsystems are rarely repaired and

greater delays occur on each subsequent subsystem. Using

the complementary strategy, however, the delays experienced

by the final few subsystems begin to approach those

experienced by the initial few. For no subsystems is the

identical strategy significantly better then the

complementary strategy. Fig. I indicates that strategies

based on a model of the human are not all equal. This

-15-
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1 "iimplies that even if a model of the human is accurate, the

"a strategy that should be employed to optimize the human-

computer system is not a function of that model alone. The

strategy must also consider whether conflicts are likely to

occur, and how to avoid them. While this is not surprising,

it does point out that developing a model of the human is

not sufficient for design of a task allocation system.

Further work would be necessary to determine the proper

allocation strategy based on a given model of the human.

In a system employing models to implicitly communicate

the human's actions to a computer, it is of interest to know

how the degree to which the model successfully predicts

human performance affects system performance. To

investigate this issue, a perfect model of the human is

initially used by the computer in each of the above

strategies. This model is then degraded in a manner which

effectively permits the computer to base its action

selections upon those of the human for only a specified

percentage of its decisions. The remaining percentage of

its actions are random selections unrelated to the actions

of the human. By observing the effects of this degradation,

3 it may be possible to determine how representative a model

must be to be useful in improving system performance.

1I
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Figure 2 demonstrates the effects of degradation of the

1 human model for both the complementary and identical

0
0

(08

0

-0

*W5 --N

Lu0

z8_
|10.1 0

-6.00 0.20 0.40 0.60 0.80 1 .00
X DEGRADAT ION

Figure 2. Subsystem down time for different amounts of model
degradation with the computer following identical
and complementary strategies.

strategies.

Looking at the complementary strategy, It can be seen

that as model degradation increases, the down time

experienced by the subsystems increases at what appears to

1
- 17 -
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be a constant rate. A Duncan's multiple range test

indicates that each level of degradation is significantly

different from every other at the .05 level. Thus, while

* having a perfect model of the human is preferable, even a

very poor model (e.g., 20% predictive/80% random in this

experiment) can improve system performance significantly.

When the computer uses the identical strategy, the

exact opposite effect is seen. Each increase in model

degradation snnificantly decreases the down time

experienced by the subsystems (according to a Duncan test).

In fact, the use of the identical strategy degrades

performance to a greater extent than the use of the

complementary strategy improves it (relative to a baseline

random strategy resulting from the use of a model with no

predictive validity). This again indicates that care must

be taken in selecting the means by which the computer makes

use of knowledge of the human's actions. However, if the

computer's actions are referenced to the human's actions

appropriately, system performance may be improved, even if

the model is a clearly imperfect representation of the

human.

The amount of degradation does not affect allI
subsystems identically (Figs. 3 and 4).

-18-
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Figure 3. Total down time for each subsystem under different
* amounts of model degradation for the computer

- following the complementary strategy.

1 4he strategy X subsystem number X degradation

interaction is significant (F(9,480)=65.84, p<.0001).

Figure 3 demonstrates the effects on subsystems of

increasing degradation when the computer uses the

complementary strategy. The amount of degradation does not

appear to significantly affect the total down time on the

first five subsystems. As mentioned earlier, it appears

that having two decisionmakers work on the same subsystems a

1
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Figure 4. Total down time for each subsystem under different
amounts of model degradation for the computer
following the identical strategy.

greater percentage of the time (as happens when degradation

is increased) does not significantly aid performance. With

|- increased degradation, however, the performance on later

subsystems is significantly degraded. It can be seen that

this decrement in the later subsystems appears to be linear

with percentage of model degradation. This figure indicates

that employing a reasonably predictive model of the human in

I an appropriate manner can not only increase system

'I2ii -20-II_ I I I



1
performance, but can also decrease the variance among the

frequencies with which different subsystems are serviced.

This would be desirable in situations in which all

subsystems are equally important to the system.

The identical strategy, on the other hand, provides

opposite results. As model degradation is increased, system

performance improves, especially in the later subsystems.

The variance with which subsystems are serviced decreases as

well. This reinforces the caveat concerning the manner in

which the computer uses knowledge of the human's actions.

Experiment 2

A second experiment was run to investigate the trade-

offs between explicit and implicit communication in human-

computer multitask situations. With explicit communication

it is assumed that the computer is always aware of what the

- human is doing and that, as a result, conflicts cease toaI
S -exist. Perfect communication is achieved, however, with the

". expense of some of the human's time toward communication to

the computer upon each of his decisions. With implicit

i communication (via a model of the human), there is an

implicit cost based on lack of ability to perfectly predict

the human's performance. In the design of a human-computer

system it would be of interest to identify those situations

1. - 21-
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in which one of these modes of communication is preferable

to the other.

In this experiment, the cost of explicit communication

was varied from 1 to . seconds. As seen in Fig. 5, as cost

0

LI)

N

0 0o
X -

- z'

1.10 .0 .04.0SO

Jl COST (S)

IIFigure 5. Total down time for different costs of explicit
.. communication.

_ increases, so does down time (F(4,100)=303.47, p<.0001).

I Since a constant increment is added to the repair time

Icharacteristic of the human, the linear increase is as

I
- 22 -
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I expected. The interaction between subsystem number and cost

is not significant: F(36,l00)=1.233, p>.05. Fig. 6 plots

I the total down time of each instrument for the different

g costs of explicit communication tested. Because conflict is

not a problem under explicit communication, the

complementary strategy employed in the first experiment

offers no general advantage over a random strategy.

I Therefore, the curves in Fig. 6 represent an average over

-~ I the levels of degradation (or in this situation, randomness)

of the complementary strategy investigated in the first

1 experiment.

* Comparing figures 3 and 6 yields the interaction of

*interest. in general, explicit communication achieves

better system performance than implicit communication for

the parameter values investigated. As the cost of

communication increases, however, there appears to be a

point at which the implicit communication mode becomes

viable. At the largest cost of 5 seconds, explicit

communication appears to be no better than implicit

communication. Any cost greater then 5 seconds would cause

41explicit communication to be poorer than implicit

communication, even with a poor model of the human. This

I indicates that the time penalties incurred in requiring

explicit communication by the human can perhaps offset the
performance decrement to be expected for implicit

communication via a less than perfect model. If the time

-23-
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• " *IXS COST

SUBSYSTEM NUMBER

• | Figure 6. Total down time for each instrument for different
costs of explicit communication.

'[ 'penalties and degree of predictive validity can be

. . quantified for a given application it would be possible for

_|the system designer to determine the most efficient

~communication mode for a specific application.
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I CONCLUS IONS

I In order to design efficient human-computer multitask

systems in which tasks are dynamically allocated to human

and computer, communication between the two decisionmakers

Iis critical. Communication of the human's action plans can

be achieved by explicit or implicit means. Correct use of

these modes of communication and of the information

J communIcated should lead to an improvement in overall system

perfo rmance.

Several conclusions can be drawn from the first

experiment presented. In a human-computer multitaskJ decision making situation, the use of a model to implicitly

convey knowledge of the human's actions can significantly

Iaid performance, even when the model is imperfect. This

increase in performance is likely to occur because of less

I conflict and redundancy in decisions; the computer will be

better able to select Its own actions so as to complement

the actions of the human. Availability of a model of the

.11 human is not sufficient for successful Implementation of

such a system, however. Before increased performance can be

I realized, an appropriate algorithm for employment of the

model must be developed. A poor choice of algorithm can

lead to poorer performance than that obtained with no model

at all. When a human-computer system employing implicit1' -25-



I communication is designed, two points of information must be
I of interest: the selection of an appropriate model of the

I human and the determination of the manner in which the

computer acts on this model to complement human performance.

I The second experiment indicates that when choosing to
-~ employ explicit or implicit communication within a human-

computer system, the costs associated with each must be

traded against one another. There are likely to be

situations in which employment of one or the other mode is

~ Jadvantageous. Further research is necessary in defining

this trade-off and in the evaluation of the costs inherentIiin each mode of communication. Such research should lead to

SIusable criteria for design decisions regarding human-
computer interaction in multitask situations.

*i~ IThis work demonstrates the need for the development of

I models of the human decisionmaker as a function of system

parameters, as well as the need to develop algorithms which

describe how to effectively use such models. This work also

demonstrates the need to define appropriate dialogue styles

for systems employing explicit communication between human

and computer decisionmakers in multitask, time-constrained

situations. Research in these areas will provide means to

,1increase human-computer system performance and to

incorporate computers within these systems in a manner more

compatible with the human's capabilities.

I -26-
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